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1. Introduction

One of the successes of string theory is the statistical mechanics derivation of the entropy

of supersymmetric black holes [1]. In particular, within the context of the AdS/CFT

correspondence [2 – 5], one can carry out detailed computations of black hole properties

and compare them to results from the dual conformal field theory.

One of the most heavily studied cases of the AdS/CFT is the duality between type IIB

string on AdS5×S5 to N = 4 SYM. In this case, however, black hole entropy counting has

turned out to be tricky. For large non-supersymmetric black holes S = cN2T 3 [6]. The

power of T is determined by dimensional analysis, N2 is the free theory scaling of degrees

of freedom,1 but the coefficient, c, can not be computed reliably [7, 8]. In the arena of

supersymmetric R-charged configurations, there are no honest black holes in the 1/2 to

1in 3+1 dimensions, the N scaling survives to strong ’t Hooft coupling. This does not necessarily happen

in other dimensions.
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1/8-BPS sector states, i.e, there is less than N2 worth of entropy, and so their horizons are

Planck scale.

In the current paper we take some first steps towards understanding the AdS/CFT

correspondence in cases with 1/16 SUSY. With this amount of supersymmetry, there is

a rich spectrum of genuine black holes with smooth horizons and non vanishing angular

momentum [9 – 12]. Our goal is to, first, find their field theory duals (forcing us to un-

derstand the addition of angular momentum), and second, to count them. In this paper

we explain some structures which are key to the construction of the 1/16 operators in the

CFT. Our construction is based on the filling of fermi surfaces, and it is similar in spirit to

the construction in terms of free fermions for the 1/2 - 1/8 BPS states [13 – 16]. Using this

structure we reproduce the scalings between angular momentum, charge and entropy of

1/16 SUSY black holes, up to coefficients of order 1. Furthermore, since the fermi surface

is multi-dimensional, it posses a complicated morphology. This suggests that additional

types of black holes might be constructed, with an equally complicated bulk morphology.

Asymptotically supersymmetric AdS5 black holes were originally constructed in [9, 10]

and later generalized in [11, 12]. These black holes carry both angular momenta2 {J, J̄}
under SU(2)L × SU(2)R and SO(6) R-charges {Q1, Q2, Q3}. Their mass is given by the

BPS equation:

M =
2J

l
+ Q1 + Q2 + Q3 . (1.1)

The Qi’s are taken to be of dimension 1, and l is the AdS5 radius.

There are two natural scaling regimes to consider according to whether the R-charge or

the angular momenta is large. In this note, we study the regime in which the black hole mass

is dominated by the angular momenta. For simplicity, we focus on black holes having three

equal SO(6) R-charges Q1 = Q2 = Q3 = Q

2
√

3
. Black holes in this regime exhibit different

angular momentum-charge relations depending on their right handed angular momentum,

J̄ (which does not appear in the BPS formula). The two scaling behaviors that we will be

interested in

J/N2 ∼(Q/N2)3/2, if J̄ '0 , Q À N2 ,

J/N2 ∼(Q/N2)2, if J̄ 'J , Q À N2 . (1.2)

We identify the correct short representations of the superconformal group, and construct

highest weight chiral operators in these representations whose quantum numbers not only

satisfy the BPS bound (1.1), but satisfy the scaling relations (1.2).

Our models rely on shells of fermions, forming a fermi sea. It is easy to motivate the

need for such a fermi sea when describing operators satisfying (1.2). Consider bringing

together two such black holes in AdS. For simplicity we focus on the case J = J̄ . Each

black hole has charge Qi , i = 1, 2 , and angular momentum Ji = J̄i ∝ Q2
i

N2 . Suppose that we

place the black holes with no relative angular momentum. In this case they cannot merge

to form a new black hole with Q = Q1 + Q2 since there is not enough angular momentum

2In the supergravity literature, it is customary to use J1,2 = J ± J̄ , where J1,2 are angular momenta on

two orthogonal 2-planes.
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for the latter. The black holes have to remain distinct from each other, suggesting a sort

of fermi exclusion principle. To have the black holes fuse we need to provide more angular

momentum to the system.

In the field theory the interpretation is the following. Let us consider the OPE of two

1/16-BPS operators that correspond to one of the microstates of these black holes. Focusing

on the 1/16-BPS operator in the expansion with total charge Q1 + Q2, and denoting

δJ = J(Q1 + Q2) − J(Q1) − J(Q2) ∝
Q1Q2

N2
(1.3)

then the Q1 + Q2 1/16-BPS operator appears in the OPE as a regular term with a power

x2δJ in front. The Q1 and Q2 operators therefore cannot be at the same point in space-

time. This is reminiscent of two fermions OPE, ψ(0)ψ(x) ∼ x(ψ(0)∂ψ(0)) and its N-species

generalization
(

N∏

i=1

ψi(0)

) 



N∏

j=1

ψj(x)



 ∼ xN

(
N∏

i=1

ψi(0)∂ψi(0)

)

(1.4)

The rest of the paper explains what are the relevant fermions and their precise structure.

It is important for us to work in the interacting theory. Indeed in [17], the spectrum

of 1/16-BPS in the free theory was computed, and was found not to satisfy relations of the

type (1.2). However if one imposes this relation, although there are too many operators

the entropy is larger only by a numerical coefficient. We will work in the interacting theory

and establish the origin of (1.2), but again up to a numerical coefficient.3

The fact that we did not obtain the correct numerical coefficient in J(Q) is not surpris-

ing since, as will be seen, we have focused only on a subset of possible fundamental fields

and fermi surface configurations. Clearly, it will be important to generalize the operators

in both avenues in order to enumerate all the possibilities.

The paper is organized as follows. In section 2 we discuss the two scaling of large black

holes that we will be interested in and which give (1.2). In section 3 we set up some field

theory aspects that are needed for our model. In section 4 we discuss the heuristic model of

fermi surfaces and reproduce qualitative aspects of J(Q) and entropy, we also construct a

class of BPS operators. Section 5 contains elaborations of the basic construction of section

4. Section 6 contains some conclusions and directions for future research.

2. Large supersymmetric AdS5 black holes

Explicit constructions of supersymmetric black holes in global AdS5×S5 with regular finite

horizons were found in [9 – 12]. These spacetime configurations were obtained either by

solving the corresponding gauged supergravity equations of motion and supersymmetry

constraints, or by studying the BPS limits of non-extremal rotating R-charged AdS5 black

holes.

3In [17], the entropy of small, charge dominated black holes, was counted using D-branes. But this

counting did not explain the J(Q) relations that we will.
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As a result of this analysis, one learns that these black holes can carry all possible

charges {J, J̄ , Q1, Q2, Q3} appearing in the maximal compact subgroup of SO(2, 4) ×
SO(6), and that they preserve 1/16 of the total supersymmetry. J and J̄ stand for the

angular momentum on the S3 in AdS5. The set {Qi, i = 1, 2, 3} stands for the angular

momenta on the transverse S5 and spans the SO(2)× SO(2)× SO(2) Cartan subalgebra of

SO(6).4

In this work, we focus on supersymmetric AdS5 black holes with equal R-charges5

Q = Ql/
√

3, and two independent angular momenta [11]:

J + J̄ =J1 = N2 (a + b)(2a + b + ab)

2(1 − a)2(1 − b)
, (2.1a)

J − J̄ =J2 = N2 (a + b)(a + 2b + ab)

2(1 − a)(1 − b)2
, (2.1b)

Q =Ql/
√

3 = N2 a + b

(1 − a)(1 − b)
, (2.1c)

Ml =2|J | + 3

2
Q . (2.1d)

The last equation is a manifestation of the supersymmetry of the system since it corresponds

to a standard BPS equation relating the mass of the state with its charges. More precisely

the exact formula is given in (3.6) and it differs from (2.1d) by a factor which is invisible

in the supergravity approximation.

Since all these black holes have a finite horizon area, we can associate a non-vanishing

entropy to them through the Bekenstein-Hawking relation:

SBH = πN2 (a + b)
√

a + b + ab

(1 − a)(1 − b)
= πQ

√
a + b + ab . (2.2)

Thus, the gravitational description of these black holes is characterized by three indepen-

dent parameters {N, a, b}. As usual, N fixes the flux of the RR five form.

There are three different scaling limits to consider depending on whether the main

contribution to the mass is given by the angular momentum sector (|J | À Q), the R-

charge sector (Q À |J |) or both (|J | ∼ Q). In the following, we shall concentrate in the

limit
|J |
N2

À Q
N2

À 1 , Ml ≈ 2|J | . (2.3)

As already emphasized in the introduction, this is a limit in which we expect to learn

something fundamentally new about the physics of the system since it focuses on the

angular momentum sector of the black hole. If we were to consider the first limit, it would

be natural to adopt a description in terms of fluctuations on top of giant gravitons, as

in [17].

4These SO(6) charges are the ones appearing naturally in supergravity. The relation between these and

the SU(4) R-charges in the dual N = 4 SYM is discussed in the appendix A.
5Taking the three R-charges equal Q1 = Q2 = Q3 = Q

2
√

3
in the notations of [10].
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There are two inequivalent ways of achieving the limit (2.3). These are obtained by

scaling either both parameters {a, b} to their extremal values (a, b → 1),6 or just one of

them:

• Scaling I: J → ∞, J̄/J → γ < 1 This corresponds to studying the scaling

a = 1 − αε , b = 1 − βε , ε → 0+ (α, β > 0).

The angular momentum of the black hole7 and entropy are given by

J → N2
√

2
√

1 − γ2

( Q
N2

)3/2

(2.4a)

SBH →
√

3 πQ , (2.4b)

where γ = (1−α/β)/(1+α/β) and it is smaller than one by construction. We mainly

focus on the γ = 0 (α = β) case where the solution is SU(2)R invariant.

• Scaling II: J → ∞, J̄/J → 1. This corresponds to scaling only one parameter

a = 1 − ε , b fixed (< 1 ) , ε → 0+ .

The angular momentum and entropy of the system behave as

J = J̄ → N2

4
(1 − b)

( Q
N2

)2

(2.5a)

SBH → π
√

1 + 2bQ . (2.5b)

It is important to keep in mind that even though J̄ → J , their difference is non-

vanishing

J − J̄ → 1

4

1 + 3b

1 − b
Q

(
¿ J , J̄

)
. (2.6)

Relations (2.4a) and (2.5a) are particular examples of the general non-linear constraints

among the global charges of the black hole. They come from the resolution of the super-

gravity equations of motion and supersymmetry constraints. They are not implied by the

superconformal symmetry of the theory, as we shall review below. One of our goals is to

provide an explanation for these scaling relations in the dual N = 4 SYM.

3. Field theory aspects

In this section, we identify the superconformal representations associated with these black

holes. We also describe the main building blocks of the chiral operators we construct later

on.

Let us first introduce some notation. We are using the conventions for N = 4 SYM

from [20]. The component fields of the N = 4 super-multiplet are denoted by:

6To avoid the existence of the so called theta horizons and closed timelike curves, the parameters {a, b}

satisfy the constraint |a|, |b| < 1.
7The reverse case J < J̄ is just the parity transformation of this case. As derived in [22] unitarity implies

that if the operator is annihilated with a combination of the Q’s then J̄ ≤ J .

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
8

(i) Fαβ and F̄α̇β̇ for the gauge fields

(ii) λαi and λ̄i
α̇ for the gauginos

(iii) Mij for the scalars

Undotted (α), dotted (α̇) greek indices and latin (i) indices stand for SU(2)L × SU(2)R ×
SU(4) symmetry indices, respectively. Left-handed fermions transform in the anti-

fundamental representation of the SU(4) R-symmetry group whereas right-handed fermions

transform as a fundamental. Scalars transform in the anti-symmetric 2-tensor representa-

tion of SU(4) and obey the reality condition:

(Mij)
† = M̄ ij =

1

2
εijklMkl.

The N = 4 supersymmetry transformations are:

δ Mjk = ζjλk − ζkλj + εjklmζ̄ lλ̄m ,

δ λj = F · ζj + 2iDMjk · ζ̄k − 2i[Mjk, M̄
kl]ζl ,

δ F = −iζj · Dλ̄j + iDλj · ζ̄j , (3.1)

where D is the gauge covariant derivative and we ignored all SU(2)L × SU(2)R and SU(N)

indices to simplify the presentation. The notation we are using has gYM hidden in the

definition of the gauge potential. Thus, the free-field limit (gYM = 0) is equivalent to

removing all commutation relations.

Our notations seem to ”jump” at g2
YM = 0. However, the counting of states with given

R-charge and angular momentum was carried out in [17] for g2
YM = 0 with the result that

the free theory has too many of them. We expect that the number of operators will change

between g2
YM = 0 and g2

YM 6= 0 and hence it is natural to work in notations adapted to the

latter.8

A detailed analysis of short and semi-short SU(2, 2|4) superconformal representations

is presented in [21]. Here, we follow their notations. Highest weights representations of

this type are classified by six quantum numbers. One of them, the conformal dimension ∆,

is always determined by the shortening of the representation. The information regarding

the other five is given by

[k, p, q]J, J̄

where [k, p, q] stands for the Dynkin labels of the SU(4) R-charges.9 The relations between

the highest weights vector in these representations and the charges given before (as reviewed

in appendix A) are:10

Q1 =
k + 2p + q

2l
, Q2 =

k + q

2l
, Q3 =

k − q

2l
. (3.2)

8In fact, it is an interesting problem whether the spectrum of 1/16 operators changes for other value of

g2
YM. The results that we present in the rest of the paper suggests that they do not.

9A representation of SU(4) with highest weight state having Dynkin labels [k, p, q] can be represented

by a Young-tableau with k columns of height 3, p columns of height 2 and q columns of height 1.
10We are using the similar notation to describe the Dynkin labels of the representation and the three

abelian R-charges. We use the square brackets [k, p, q] whenever we refer to the representation, while we

use round brackets (k, p, q) for the weights.
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There are two families of 1/16-BPS states {c1/4, c̄1/4} which are conjugate to each

other [21]. Highest weight states |k, p, q; J, J̄ > belonging to the c1/4 representation

satisfy the BPS condition:

|k, p, q; J, J̄ >∈ c1/4 ⇔
(

Q1
2 −

1

2J + 1
J− Q1

1

)

|k, p, q; J, J̄ >= 0 , (3.3)

where J− stands for the lowering operator in SU(2)L and Qi
α are supercharge generators.

The supercharges Q1
α transform in the representation:

Q1
α ∼ [1, 0, 0]±1/2,0 .

An equivalent characterization of these representations can be given in terms of null states:

c1/4 : [k, p, q](J,J̄)
Q−−→ [k + 1, p, q](J− 1

2
,J̄) null

c̄1/4 : [k, p, q](J,J̄)
Q̄−−→ [k, p, q + 1](J,J̄− 1

2
) null, (3.4)

For the [k, 0, 0] representation, which we are interested in, the expression is:

εαβ1

[

Q(i0
α ,Oi1,...ik)

(β1,...β2J )(β̇1,...β̇2J̄ )

}

= 0. (3.5)

here O stands for the primary operator in the c1/4 multiplet,11 i.e O is annihilated by all

superconformal supercharges. The symmetrization of the indices (i0, i1, . . . ik) in (3.5)

ensures that we pick the highest weight state with R-charge k+1, whereas the anti-

symmetrization in εαβ1 picks the state with SU(2)L angular momentum J − 1/2. Finally,

the conformal dimension ∆ of the primary operators in the multiplet is given by the BPS

formula:12

∆[c1/4] = 2 + 2J +
3

2
k + p +

1

2
q ,

∆[c̄1/4] = 2 + 2J̄ +
1

2
k + p +

3

2
q . (3.6)

Notice that the above differ by 2 with the conformal dimension (Ml) derived from super-

gravity. As mentioned before, this constant factor is unobservable in the gravity regime

where all charges are generically taken to be large to ensure a reliable classical spacetime

description.

The Young tableau corresponding to the Q1 = Q2 = Q3 operators (p = q = 0) is:

. . .

︸ ︷︷ ︸

k

11We are freely using the state-operator mapping to transfer between operators in N = 4 SYM on R1,3

and states of N = 4 SYM on R1 × S3

12Remember, that all primary operators, with the same charges, satisfy the bound ∆ ≥ ∆[BPS]. The

bound is saturated for BPS primary operators. Non-vanishing operators with lower dimensions are mani-

festly descendants
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(J, J̄) (k, p, q) ∆ ∆exc

M12, M13, M14 (0 , 0) (0, −1, 0), (−1 1, −1), (−1, 0, 1) 1 2

M̄12, M̄13, M̄14 (0 , 0) (0, 1, 0), (1, −1, 1), (1, 0, −1) 1 0

λ̄1 (0, 1/2) (1, 0, 0) 3/2 0

λ̄2, λ̄3, λ̄4 (0, 1/2) (−1, 1, 0), (0, −1, 1), (0, 0, −1) 3/2 2

λ1 (1/2, 0) (−1, 0, 0) 3/2 2

λ2, λ3, λ4 (1/2, 0) (1, −1, 0), (0, 1, −1), (0, 0, 1) 3/2 0

Fαβ (1, 0) (0, 0, 0) 2 0

F̄α̇β̇ (0, 1) (0, 0, 0) 2 2

Dαα̇ (1/2, 1/2) (0, 0, 0) 1 0

Table 1: Fundamental Fields. Dαα̇ is the covariant derivative

It should now be apparent that the non-linear constraints (2.4a) and (2.5a) derived in

supergravity are rather non-trivial. As far as the superconformal algebra is concerned all

values of J , J̄ and k are allowed. Our goal is to explain the details of J(Q) dependence

based on the details of N = 4 SYM.

The global charges carried by the fundamental degrees of freedom in the N = 4 super-

multiplet, in the conventions introduced above, are summarized in table 1. ∆exc stands for

the excess dimension compared to the global part of the BPS formula (without the offset

’2’):

∆exc = ∆ − 2J − 3

2
k − p − 1

2
q (3.7)

We will be interested in the following building blocks (all the SU(2)L ×SU(2)R indices

are symmetrized):

A
(I) i

(β1,...βI)(β̇1,...β̇I+1)
≡ Dβ1β̇1

· · ·DβI β̇I
λ̄i

β̇I+1
(3.8a)

B
(I) ij

(β1,...βI)(β̇1,...β̇I+1)
≡ Dβ1β̇1

· · ·DβI β̇I
M̄ ij (3.8b)

C
(I)

(β1,...βI)(β̇1,...β̇I+2)
≡ Dβ1β̇1

· · ·DβI β̇I
F̄β̇I+1β̇I+2

, (3.8c)

E
(I+1)

(β1,...βI+1)(β̇1,...β̇I)i
≡ Dβ1β̇1

· · ·DβI β̇I
λβI+1i (3.8d)

G
(I+2)

(β1,...βI+2)(β̇1,...β̇I)i
≡ Dβ1β̇1

· · ·DβI β̇I
FβI+1βI+2

(3.8e)

The global charges of these building blocks are summarized in table 2, where the [k, p, q]

are the Dynkin labels of the representations and the excess dimension is calculated for

the highest weight. The transformation properties of these operators under the action of

– 8 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
8

(J, J̄) [k, p, q] ∆ ∆exc

A(I) ,i (I/2 , I/2 + 1/2) [1, 0, 0] I + 3/2 0

B(I) ij (I/2 , I/2) [0, 1, 0] I + 1 0

C(I) (I/2 , I/2 + 1) [0, 0, 0] I + 2 2

E
(I+1)
i (I/2 + 1/2 , I/2) [0, 0, 1] I + 3/2 2

G(I+2) (I/2 + 1 , I/2) [0, 0, 0] I + 2 0

Table 2: Building Blocks

left-handed supercharges Qi are as follows:

{

Qi, A(I)j
}

= − 2

I∑

m=1

(
I

m

)

ε
{

A(m−1)i, A(I−m)j
}

+

− 2i
I∑

m=1

(
I

m

)

ε
[

C(m−1), B(I−m)ij
]

− 2iB(I+1)ij (3.9a)

[

Qi, B(I)jk
]

= − 2

I∑

m=1

(
I

m

)

ε
[

A(m−1)i, B(I−m)jk
]

+

+ εijkl

(

1

2
εi′j′k′l′

I∑

m=1

(
I

m

)

ε
[

A(m−1)k′
, B(I−m)i′j′

]

+ E
(I+1)
l

)

(3.9b)

[

Qi, C(I)
]

= − 2

I∑

m=1

(
I

m

)

ε
[

A(m−1)i, C(I−m)
]

− 2iA(I+1)i (3.9c)

{

Qi, E
(I+1)
j

}

= − 2
I+1∑

m=1

(
I + 1

m

){

A(m−1)i, E
(I+1−m)
j

}

+

− iεjkln

I+1∑

m=1

(
I + 1

m

)[

B(m−1)ln, B(I+1−m)ki
]

+ δi
jG

(I+2) (3.9d)

[

Qi, G(I+2)
]

= − 2

I+2∑

m=1

(
I + 2

m

)[

A(m−1)i, G(I+2−m)
]

+

− 2i
I+2∑

m=1

(
I + 2

m

)[

E
(m−1)
j , B(I+2−m)ji

]

(3.9e)

In the above expressions, SU(2)L × SU(2)R indices are hidden (ε are εαβ’s), for exam-

ple (3.9c) reads,

[

Qi
αI+1

, C
(I)
(α1,...αI )(α̇1,...α̇I+2)

]

= −2iA
(I+1)i
(α1,...αI+1)(α̇1,...α̇I+2)

+ 4i

I∑

m=1

∑

{i}∈σI+1

{j}∈σI+2

(
I

m

)

·

·
[

A
(m−1)i
αi1

,...αim−1
,α̇j1

,...α̇jm
, C

(I−m)
αim+1

,...αiI
,α̇jm+1

,...α̇jI+2

]

εαimαiI+1
(3.10)
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The σn are all permutations of the integers 1, 2, . . . n. Recall that indices of A, B, C, E

and G operators are complectly symmetrized.

A key role in the next section is played by the first term in each rhs. This term comes

from the commutator [

Qi
α , Dββ̇

]

· O = −2εαβ

[

λ̄i
β̇

, O
]

(3.11)

where O is in the adjoint representation of SU(N).

4. Fermi surface model of the black hole

The model we propose for the operators corresponding to 1/16-BPS AdS5 black hole mi-

crostates in the limit (2.3) is based upon a fermi sea. Each fermion carries a fixed SU(4)

index and an increasing angular momentum.13 In particular, the difference between the

two functional relations in (2.5a) and (2.4a) comes about by the different ways of filling

the fermi-surface: either by using SU(2)R singlets or highest weight vectors.

Our fermi sea is constructed out of operators of the type A(I) 1, as defined in equa-

tion (3.8a). To motivate this, consider a black hole with J = J̄ (approximately), satisfying

J À Q. We would like to construct operators out of the basic fields in table 1, having a

large angular momentum to R-charge ratio. The following restrictions apply:

• We may use as many derivatives Dαα̇ as needed.

• The BPS formula prevents us from using F̄α̇β̇ .

• The Mij’s do not carry angular momentum and can be neglected at this stage of the

construction.

• Fermionic operators λαi and λ̄i
α̇ carry both angular momentum and R-charge. The

BPS formula does not allow contractions of the SU(4) indices, thus the operators

contribute only a linear relation between angular momentum and R-charge.

• Fαβ carries no J̄ and can be neglected when constructing an operator with J̄ = J .

This implies that the operator is made out of mainly gauge covariant derivatives D that

increase the angular momentum (J) of a set (order Q) of fields carrying the R-charge.

Equation (3.11) tells us that acting with the supercharges Qi on any operator built out of

many D’s, necessarily yields a non-zero operator. A way to overcome this conclusion is

to realize that the ”universal” part of the rhs side in (3.11) is a fermion - i.e, λ̄i. Thus,

if this fermion already appears in the operator, the Pauli exclusion principle ensures that

the descendant under Q vanishes.

Two important properties of the Q1 supercharges are:

[

Q1,DD · · ·D
︸ ︷︷ ︸

I times

·O
}

= − 2

I∑

m=1

(
I

m

)[

A(m−1)1, D · · ·D
︸ ︷︷ ︸

(I − m) times

·O
}

+DD · · ·D
︸ ︷︷ ︸

I times

·
[

Qi,O
}

, (4.1a)

{

Q1, A(I)1
}

= − 2

I∑

m=1

(
I

m

){

A(m−1)1, A(I−m)1
}

. (4.1b)

13i.e, the angular momentum is analogous to the momentum for standard fermi surfaces. Since we are

working in radial quantization, or conversely, local operators, this is a natural modification.
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Notice that all fermions appearing in the variation of the D’s are always of type A(I) 1.

Furthermore, the latter operators are closed under the action of Q1. We conclude that the

simplest way to make all the rhs supersymmetry variations of the D’s to vanish is to use

the fermions A(I) 1 as the basis for the fermionic shells. The levels of these shells will be

naturally labeled by the left-handed angular momentum of the A(I) 1’s.

This simple assumption on the structure of the operators allows us to reproduce the

scalings (2.4a) and (2.5a) between R-charge and angular momentum up to coefficients of

order 1. Define the SU(2)L × SU(2)R highest weight operator:

A
(I)1
hw ≡ A

(I)1
111...1
︸ ︷︷ ︸
I times

, 1̇1̇1̇...1̇
︸ ︷︷ ︸

I+1 times

(4.2)

We focus on two cases: J̄ = 0 and J̄ = J .

The case J̄ = 0: The SU(2)R invariant 1/16-BPS operators are built out of a ’closed

fermi-surface’ model (see figure 1) described by the operator

Jd
(K)
closed ≡

K∏

I=0

I+1∏

m=0

Jdet
[

(J̄−)mA
(I) 1
hw

]

(4.3)

where ’Jdet’ stands for the anti-symmetrized multiplication of the entire SU(N) adjoint

multiplet:14

Jdet [X] = εa1a2...agX
a1Xa2 . . . Xag , X =

g
∑

a=1

XaT a (g = dim G) , (4.4)

for a fermionic X.

In a covariant form of (4.3) the left-handed angular momentum indices are totally

symmetrized, whereas the action of J̄− generates the multiplication of the entire SU(2)R
multiplet. This causes J̄ to vanish. Thus, Jd

(K)
closed belongs to the representation [k, 0, 0](J,0)

and carries two charges (J, Q) which for large K and N equal:

J =(N2 − 1)

K∑

I=0

I+1∑

m=0

I

2
= N2 K3

6
+ O(K2, N) ,

Q = k =(N2 − 1)

K∑

I=0

I+1∑

m=0

1 = N2 K2

2
+ O(K,N) . (4.5)

Solving for K, the scaling J ∼ Q3/2/N emerges, matching (2.4a).

The operator Jd
(K)
closed is invariant under the chiral supercharge

[k, 0, 0](J,0)
Q−−→ [k + 1, 0, 0](J± 1

2
,0) ⇐⇒

[

Q(i
α ,Jd

(K)i1,...ik)
closed

}

= 0. (4.6)

This originates from the Pauli exclusion principle as follows. The action of the super-

charge ’splits’ each A factor in Jd
(K)
closed into two A factors of smaller angular momentum

14This operation takes the vector space of the adjoint into (V )∧ dim G which is a singlet.
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Figure 1: The fermi sea picture of the close-

shell operator

Figure 2: The fermi sea picture of the open-

shell operator

(see (4.1b)). However, each of these factors already appears in Jd
(K)
closed. Thus

[
Q1

α,Jd
(K)
closed

}

vanishes due to its fermionic nature. Using the highest-weight of SU(2)L and SU(4) the

construction can be viewed as a fermionic shell model, whose ’level’ is the left-handed

angular momentum15 and the degeneracy is the SU(2)R and SU(N) multiplet. In this

picture, each A factor is a creation operator of a fermionic state, and consequently, the

Jd
(K)
closed corresponds to filling all the shell up to level K. In terms of figure 1, for each level

J̄ (equally J) we fill all the SU(2)R multiplet J̄3 = −J̄ , . . . J̄ . The action of the chiral

supercharge tries to split a fermion into two fermions belonging to lower levels, which is

forbidden due to Pauli exclusion.

The case J̄ = J: The equal left and right angular momenta 1/16-BPS operators are

built out of an ’open fermi-surface’ model (see figure 2) described by the operator

Jd(K)
open ≡

K∏

I=0

Jdet
[

A
(I) 1
hw

]

(4.7)

The absence of J̄− (compared to the closed shell model) in a covariant form causes all

Lorentz indices (left and right handed) to be fully symmetrized. In terms of figure 2 at

each level J̄ (equally J) we occupy a single fermion with maximal J̄3 = J̄ . Calculating

the charges in the large K and large N regime:

J = J̄ =(N2 − 1)
K∑

I=0

I

2
= N2 K2

4
+ O(K2, N) ,

Q = k =(N2 − 1)
K∑

I=0

1 = N2K + O(K,N) . (4.8)

Once again, solving for K, the scaling J = J̄ ∼ Q2/N2 emerges, matching (2.5a).

15Remembering that for the A(I)1 building blocks J̄ = J +1/2, thus we can use the right-handed angular

momentum as well.
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The operators introduced for the fermi-surface models are manifestly descendants, as

seen from the ”extra” supercharge in (4.6) and the failure to satisfy the BPS formula:16

∆BPS[k, 0, 0](J,0) = 2 + 2J +
3

2
k ∆[Jd(K)] = 2J +

3

2
k (4.9)

In the rest of the section we show how to construct genuine 1/16-BPS primaries by com-

bining the fermi sea with bosonic operators. It is the addition of these bosonic excitations

that yields a macroscopic entropy, i.e large enough degeneracy of operators, to generate a

macroscopic black hole entropy in Planck units. There is also a large degeneracy of fermi

surfaces as we will see in section 5.

4.1 Building c1/4 primaries

We are interested in modifying the shell construction to achieve several goals: saturation

of the BPS bound, introduction of degeneracies (entropy) and having the operator be

a primary. All these properties are satisfied by the addition of the adequate bosonic

structures. In particular, we consider the following large family of c1/4 operators:

O(K, ~J) ≡ Jd(K)
(

C(K+1)B(~J)
)

GI
2Ji ≤ K (4.10)

Jd(K) stands for either (4.3) or (4.7) and the subscript ’GI’ stands for a gauge invariant

combination. ~J is a length 3L vector of angular momenta and

B( ~J) ≡
L∏

i=1

B(2Ji) 12B(2JL+i) 13B(2J2L+i) 14 . (4.11)

Notice that we are forced to add the bosons B(I)1i in triplets to have vanishing R-charges

p and q. The operator C(K+1) is the only building block in O(K, ~J) satisfying ∆exc =

∆ − 2J − 3
2k = 2 (all the rest has ∆exc = 0). This suggests including a single excitation

of type C in each c1/4 operator to saturate the BPS bound. As we explain below, the

insertion of C also plays a crucial role in allowing the full operator (4.10) to be a primary.

For the closed shells models the right-handed angular momentum coming from the

C(K+1) and B( ~J) is arbitrary. For the open shells model we need to symmetrize over all

doted indices coming from the fermion and bosons resulting in J̄ ' J . Actually for the

open shells one needs to work a little harder to create a primary. The total J̄ is larger than

J due to the extra doted index of the Weyl spinors λ̄1
α̇, with the consequence that we are

really describing a descendant operator. In section 5.2 we show how to fix this problem.

Acting with the chiral-supercharge (4.6) on the bosons B(I)1i and C(K+1) splits any

boson into a sum of pairs consisting of a fermion and a boson in lower levels. All the

fermions are of the type A(I)1. Our operators are constructed in such a way that all A(I)1

operators generated from the splitting of B or C are occupied. Hence Q1 acting on B or

16One may wonder if the failure to comply with the BPS bound should means that the operator vanish,

it is easy to check that this is not the case for the case of SU(2) where one can replace the determinant of

the adjoint representation by a trace Jdet [X] = Tr(fund)

“

X{X, X}
”

for a fermionic X
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C vanishes on the fermi surface (this is the origin of the constraints on the maximal Ji’s

in (4.11)). The only exception is the supercharge acting on the C(K+1) which contains a

term transforming it to a fermion in a higher level. Thus we are left with:
[

Q(i
α ,O(K,J̄)i1,...ik)

}

= Jd(K)
(

A(K+2)1B(~J)
)

. (4.12)

In term of charges

[k, 0, 0](J,J̄ )
Q1

−−−→ [k + 1, 0, 0](J+ 1
2
,J̄)

The above argument proves that O(K,J̄) obeys the semi-shortening condition of a super-

multiplet with [k + 1, 0, 0](J− 1
2
,J̄) removed. We are still left with the task of finding out

when the operator O(K,J̄) is a primary.

For the ~J = 0 case, we would like to suggest the following criteria for the bosonic part

of the operator (although a full proof remains to be carried out). The constraint for O(K,0̄)

to be a primary17 is that its bosonic part (i.e, its B’s + a single C) is an N = 4 1/8-BPS

operator, with the only difference being that a single C(K+1) is plugged into one of the

traces.

The arguments for this claim are the following. The composite O(K,~0) is made out of

three components:

1. The B’s part is a genuine 1/8-BPS operator, annihilated only by Q1
α, and cannot be

written as a Q, Q̄ or a derivative of anything.

2. The C(K+1) part, which can be written as (no summation of repeated indices):

C(K+1) =
(
{Q1, Q̄1}

)K+1 · {Q̄i, [Q̄jM̄
ij]}

3. The closed shells operator Jd(K)

We argue that any attempt to write O(K,~0) as a Q or a Q̄ of another operator, just by

”pulling out” a single supercharge fails. Our arguments are not complete, but we analyse

the simplest ways to write O(K, ~J) as a Q or Q̄ of another operator.

First we try ”pulling out” a supercharge from one of the components. We cannot pull

out anything from the B’s part, so we try to write:

O(K,~0) = Q ·
(

Jd(K)Y B(~0)
)

or O(K,~0) = Q ·
(

XC(K+1)B(~0)
)

(4.13)

For the above to ”work” we need Q to annihilate B(~0), the only possible supercharges are

Q1
α. Considering the supersymmetry transformation, we see that X and Y in (4.13) are:18

C(K+1) = Q1
+1/2 · A(K)1 ⇒ Y = A(K)1

Jd(K) = Q1
−1/2 ·

∂2Jd(K)

∂A(I)1A(I′)1
A(I+I′+1)1 ⇒ X =

∂2Jd(K)

∂A(I)1A(I′)1
A(I+I′+1)1.

17up to the addition of descendants, of course.
18The notations Q1

+1/2 and Q1
−1/2 stand for the parts of the supercharge which raise or lower the angular

momentum (respectively).
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In the above expression, a derivative of a composite with respect to fermionic operators

should be understood as removing a single copy of the operator from the composite.

The first option fails, due to Pauli exclusion - the operator Y is annihilated on the

fermi sea. The second option inserts holes in the fermi sea at A(I)1 and A(I′)1. This means

that the variation has extra terms coming from the variation of C(K+1) which fills one of

these holes. Hence, we do not obtain equation (4.13) in this way. It does not seem possible

to cancel these extra terms (for example, by taking sums over different I and I ′), although

a full proof remains to be formulated.

The next possibility we attempt to falsify is ”pulling out” a supercharge from the

combination of the fermi-sea and bosons B(~0), i.e splitting a boson into a pair of a fermion

and a boson:

O(K,~0) = Q ·
(

∂Jd(K)

∂A(I)1
C(K+1) ∂B(~0)

∂B(0)1i
B(I+1)i′j′

)

Checking the supersymmetry transformations, we see that the only possibility is having

i′j′ = 1i and Q = Q1
−1/2. Now we can repeat the argument that the hole in the fermi-

sea allows for non-vanishing transformation of the C(K+1) and fails to achieve the above

equality.

Trying to ”pull out” a supercharge form the combination of the C(K+1) and B(~0), fails

from similar reasonings. We are left to check that we cannot ”pull out” a supercharge from

the combination of the fermi-sea and the C(K+1). To examine this option, consider the

supersymmetry transformation:

Q1
− 1

2
·
(

∂Jd(K)

∂A(I)1
C(J+I+1)B~(0)

)

= Jd(K) C(J)B(~0) +

J+I+1∑

r=K+2

∂Jd(K)

∂A(I)1
A(r−1)1C(J+I+1−r)B(~0)

(4.14)

We would like to know for what values of J , the sum in the rhs will be non-zero for any

value of I (I ≤ K). In addition for Jd(K) C(J)B(~0) to be BPS we must have J < K + 2.

The conditions that J < K +2 and that J + I +1 ≥ K +2 for all 0 ≤ I ≤ K have a unique

solution of J = K + 1, which is the operator that we presented before.

From the above discussion we also learn the existence of a general rule: in order to

construct a primary from a fermionic shell model, we must have a C factor in an empty

shell adjacent to the last filled shell.

4.2 Charges

O(K,J̄)
closed and O(K,J̄)

open are constructed so that the SU(2)L and SU(4) charges are additive.

The contributions of each composite to the global charges19 carried by the operator are

summarized in table 3.

Remembering that the B’s come in triplets B12B13B14, we immediately see the emer-

gence of the BPS formula:

∆ = 2 + 2J +
3

2
k . (4.15)

19In this section we are explicitly using the Cartan of the the SU(4) R-symmetry, the Dynkin labels

(k, p, q) are the weights of the states.
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J (k, p, q) ∆ ∆ − 2J − 3
2k

A(I),1 I/2 (1, 0, 0) I + 3/2 0

B(I)12 I/2 (0, 1, 0) I + 1 1

B(I)13 I/2 (1,−1, 1) I + 1 −1/2

B(I)14 I/2 (1, 0,−1) I + 1 −1/2

C(I) I/2 (0, 0, 0) I + 2 2

Table 3: Charges of Jd(K, ~J) building blocks.

We calculate the charges of the closed shell model with B’s, postponing the open shell

model discussion to section 5.2. For the closed shells model, the total charges are computed

by summing the contributions over the different ingredients:

J =(N2 − 1)

K∑

I=0

I+1∑

m=0

I

2
+

K + 1

2
+

3L∑

i=1

Ji (4.16a)

Q = k =(N2 − 1)

K∑

I=0

I+1∑

m=0

1 + 2L (4.16b)

The right handed angular momentum is bounded from above by
∑3L

i=1 Ji, but could be

taken to 0 by suitable contractions.

Taking the large R-charge and large angular momentum limit is equivalent to taking

K À 1. Simplifying the charges in this case and taking N À 1:

J ≈ N2 K3

6
+

3L∑

i=1

Ji ≤ N2 K3

6
+

3

2
LK , (4.17a)

Q ≈ N2 K2

2
+ 2L , (4.17b)

where the bound in (4.17a) originates from (4.10). The maximal value for J in this family

of operators is obtained as follows. First, we solve (4.17b) for L and substitute it back

into (4.17a)

J ≤ 3Q
4

K − 5

24
N2K3 . (4.18)

If we view the rhs as a function of K, the latter is bounded from above. This generates an

upper bound for J for all Q given by

Jmax

N2
=

√
3√
20

√
2

( Q
N2

)3/2

≈ 0.39
√

2

( Q
N2

)3/2

(4.19)

If we compare this result to the supergravity scaling (2.4a) (with γ = 0), we realize

that our fermi-sea operators reproduce the same scaling relation, but differ in an order

one number in its coefficient. In particular, the angular momentum is approximately 0.39

times smaller than the supergravity charge. If we had neglected the bosons, we would have

found:
J

N2
=

√
2

3

( Q
N2

)3/2
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Thus, the addition of the bosons improves the order 1 coefficient but not enough to match

the supergravity result.

One can also wonder about lower values of J . Naively one can add many bosons in low

angular momentum levels. Such operators have angular momentum linear in the charge (or

less). For example, adding bosons up to level K ′ which is fixed as K scales to infinity, pulls

down the angular momentum to charge scaling down to J ∼ Qβ (0 ≤ β < 3/2). However,

the degeneracy of such configuration is of the same order as the degeneracy of standard

1/8-BPS operators which scales as N log N [17]. As we discuss in the following section, the

entropy of our operators, with large angular momentum (J ∼ Q3/2/N), scales as Q (which

is much greater than À N2). Thus operators with scaling β < 3/2 are subdominant and

should not affect the macroscopical features of the ensemble.

The shell structure that we discussed, and its completion to primary operators, re-

produces the scaling relation J(Q) up to numerical coefficient. We now present a simple

computation that reproduces the correct scaling of the entropy as well, up to order 1 coef-

ficient. We carry out the computation both for the open and closed shells. In both cases,

the entropy will be proportional to Q, which is the correct result, but we will see that it

comes about in different ways for the two cases.

4.2.1 Entropy of the closed shell model

In this section we estimate the degeneracy of the bosonic part under the following assump-

tions:

• Ignoring the constraints for the operator to be primary.

• Ignoring any finite N dependence.

The statistical model we use is a Fock space of free bosons. The single particle bosonic

states contribution to the degeneracy are: B(I)12, B(I)13 and B(I)14, with I taking values

from 0 to K. We introduce a chemical potential for the right-handed angular momentum

(J) and for the R-charges (k, p and q) allowing for J̄ to be determined by the ensemble

average. The partition function takes the familiar form (see [19]) of summation over all

multi-particle states:

log Z =

∞∑

r=1

1

r
fsp(rγ1 , rγ2 , rγ3 , rµ) , (4.20)

with the single particle partition function:

fsp(γ1 , γ2 , γ3 , µ) =

K∑

I=0

N2−1∑

a=1

I∑

m=0

(
eγ1−γ3 + eγ1−γ2+γ3 + eγ2

)
e

µI
2 (4.21)

The chemical potentials are defined such that the boson contribution to the charges is:

k̂ =
∂ log Z

∂γ1
, p̂ =

∂ log Z

∂γ2
, q̂ =

∂ log Z

∂γ3
, Ĵ =

∂ log Z

∂µ
. (4.22)
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We are interested in p = q = 0, which determines:

γ1 = 3γ3 =
3

2
γ2 ≡ γ (4.23)

Evaluating the partition function (in the large N and K limit):

log Z(µ, γ) = − 3N2
K∑

I=0

(I + 1) log

[

1 − exp

(
2

3
γ +

µ

2
I

)]

=

≈− 3N2K2

∫ 1

0
dy y log

[

1 − exp

(
2

3
γ +

µ

2
yK

)]

=

=
12K2N2

(Kµ)2

(

Pl
[

3, e
2
3
γ
]

− Pl
[

3, e
2
3
γ+ Kµ

2

]

+
Kµ

2
Pl

[

2, e
2
3
γ+ Kµ

2

])

(4.24)

where Pl [n, z] is the PolyLog function. The form of the partition function suggests using

the variables:

x =
Kµ

2
, ξ = e

2
3
γ

We wish to set the chemical potentials to fix the charges (remembering the contribution of

the fermions):

J =
N2K3

6
+ Ĵ =

N2K3

6
+

K

2

∂ log Z

∂x
= N2K3 a(x, ξ)

Q =
N2K2

2
+ k̂ =

N2K2

2
+

2

3

∂ log Z

∂ log ξ
= N2K2 b(x, ξ) (4.25)

with,

a(x, ξ) ≡ 1

6
− 3

2x
log (1 − ξex) − 3

x3
(Pl [3, ξ] − Pl [3, ξex] + xP l [2, ξex])

b(x, ξ) ≡ 1

2
− 2

x
log (1 − ξex) +

2

x2
(Pl [2, ξ] − Pl [3, ξex]) (4.26)

There are two conditions that we would like to force on the ensemble:

J

N2
= α

√
2

( Q
N2

)3/2

, J À Q (4.27)

The first is the supergravity scaling (from the previous discussion we expect α to be of order

1). The second is the condition for the energy to be dominated by the angular momentum.

Applying (4.25) to (4.27) we conclude:

a ∼ b3/2 , K À b

a
∼ b−1/2

The interesting regime is K large, a,b fixed (x, ξ fixed). In this regime the scaling of the

entropy becomes:

S(J,Q) = log Z − 2

3
γ · k̂ − µ

2
· Ĵ = K2N2f(x, ξ)

∼K2N2 ∼ Q (4.28)
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Since the variable x and ξ depend on Q and J in such a manner that they do not scale

with K or N , therefore the function f(x, ξ) does not scale with K or N .

This result matches qualitatively the supergravity relation (2.4b) and confirms our

claim that the 1/16-BPS operators constructed from the closed shell models indeed carry

macroscopical large entropy (S ∼ N2K2) unlike the 1/8-BPS operators with no angular

momentum (S ∼ N log N).

In the above calculation we used a slightly different scheme than in the rest of the

paper. We fixed J and Q and let J̄ be determined by the ensemble (instead of fixing J̄ and

Q). This was done for convenience and it should not affect the validity of our conclusion.

4.2.2 Entropy of the open shells models

The calculation for the open shells is done in a similar spirit to the closed shells one with

the summation over the SU(2)R multiplet removed.

log Z =
∞∑

r=1

1

r
fsp(rγ , rµ) , fsp(γ , µ) =

K∑

I=0

N2−1∑

a=1

3e
2
3
γ+ µI

2 (4.29)

Repeating the steps of the previous subsection, we obtain:

J =
N2K2

4
+ Ĵ = N2K2 a(x, ξ)

Q =N2K + k̂ = N2K b(x, ξ) (4.30)

with,

a(x, ξ) ≡ 1

4
− 3

2x
log (1 − ξex) − 3

2x2
(Pl [2, ξex] − xP l [2, ξ])

b(x, ξ) ≡ 1 − 2

x
(log (1 − ξex) − log (1 − ξ)) (4.31)

The two conditions that we force on the ensemble are:

J

N2
= α

( Q
N2

)2

, J À Q ⇒ a ∼ b2 , K À b−1 (4.32)

We find that a(x, ξ) and b(x, ξ), cannot scale with K or N . In general, solving (4.30) for

x and ξ, we conclude that all the dependence on Q and J is such that they are order 1

numbers (not scaling with K or N). Thus, the entropy of the ensemble is given by:

S(J,Q) = log Z − 2

3
γ · k̂ − µ

2
· Ĵ = K2Nf(x, ξ)

∼K2N ∼ Q (4.33)

The result matches qualitatively the supergravity relation (2.5b) and matches our expec-

tations that the 1/16-BPS operators constructed from the open shell models indeed carry

macroscopical large entropy (S ∼ N2K).
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Figure 3: A band of closed-shells Figure 4: A general fermi sea picture

5. Generalizations

In this section, we take some steps towards generalizing the structures studied before. Even

though one can potentially achieve this by adding more fields to the operators in question,

we focus here on a more interesting possibility which is the deformation of the fermi sea

structure. We will not describe the bosonic part of the operator nor discuss whether these

new operators are primary or not.

First of all, we provide the basic rules that any shell has to satisfy. A fermion in

the fermi-sea is characterized by its quantum numbers under SU(2)L × SU(2)R, i.e.20

A|J, m=J〉|J̄=J+1/2, m̄〉. Under the action of the supercharge (3.3), the fermion splits ac-

cording to:

A|J,J〉|J+ 1
2
, m̄〉

Q1
−1/2−−−−→

∑

J1,J2
m̄1,m̄2

A|J1,J1〉|J1+
1
2
, m̄1〉 ⊗ A|J2,J2〉|J2+

1
2
, m̄2〉

with, J = J1 + J2 + 1/2 , m̄ = m̄1 + m̄2 (5.1)

Denoting the set of occupied fermions by M, the conditions for invariance under (3.3) are

that A|J1,J1〉|J1+
1
2
, m̄1〉 ∈ M or, A|J2,J2〉|J2+

1
2
, m̄2〉 ∈ M for each possible combination in the

sum (5.1).

Figures 3 and 4 exhibit two methods of finding a set M satisfying these constraints

(there are also ways of combining the two methods). In section 5.1 we discuss the method

corresponding to 3, and in section 5.2 we discuss the generalization corresponding to 4.

5.1 Fermionic bands

The first generalization that we describe is to add fermions in a level higher than K. Any

fermionic operator A(I) 1 with level up to 2K splits under the supercharge Q1 action into

two fermions, such that at least one of them is below level K. Hence, such action is

annihilated on the closed shell. We can continue this construction by adding closed shells

near level 2K (we call this a band) allowing to have fermions with level up to 3K.

Iterating this procedure, we can build multiple fermionic bands. Leaving the details

to appendix B, we search for the best configuration of fermions in n bands. The upper

20We temporarily change our notation, using the quantum numbers instead of the Lorentz indices. We

use m and m̄ for the J3 and J̄3 eigenvalues, respectively.
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bound on the angular momentum to charge ratio is found for the single-band case drawn

in figure 3, with:

J = αN2
√

2

( Q
N2

)3/2

, α ≤ 3

2
√

11
≈ 0.45. (5.2)

The bound is saturated when the contribution of the bosons is completely negligible.21

5.2 General fermionic shells

As with any fermi surface, we can deform it. For our surface in the J̄ − m̄ plane, this can

be done as follows. Regarding (J̄ , m̄) as a 2-vector, we see that the splitting of a fermion

in (5.1) by the supercharges results in a 2-vector summation:

(J̄ , m̄) = (J̄1, m̄1) + (J̄2, m̄2) , J̄i ≥ |m̄i| (i = 1, 2) ,

where the last inequality is the condition that the vector represents true SU(2)R quantum

numbers. Therefore a fermion can only split into parts that are confined to a rectangular

whose opposite corners are the original vector and the origin (described in figure 4 by the

darker part of the fermi-sea).

Hence, the description of the fermi-sea is given by the contour of the last (highest

angular momentum) occupied fermions J̄max(m̄). The condition for invariance under the

supercharge is simply: ∣
∣
∣
∣

dJ̄max

dm

∣
∣
∣
∣
≤ 1

Even though the calculation of charges of the surface is somewhat complicated, the value

of Q , J and J̄3 are just integrals (in the large K limit) over the fermi-sea:

J

N2
=

∫∫

sea
dJ̄dm̄ J̄ (5.3a)

Q
N2

=

∫∫

sea
dJ̄dm̄ 1 (5.3b)

J̄3

N2
=

∫∫

sea
dJ̄dm̄ m̄ (5.3c)

For (5.3a) recall that we have chosen a highest weight with respect to SU(2)L (see eq. 4.2).

A state constructed this way has a well defined J̄3 eigenvalue, but one still needs to project

to states with specific J̄ .

In the following paragraph we describe in detail an example for a class of fermi surfaces

where we have a good control over all charges. The operators in this class have the nice

feature that they have scalings matching the black holes with arbitrary J and J̄ .

5.2.1 Generalized open-shells

The fermi sea we will describe is a generalization of the open-shell model, where a constant

number of fermions at each level is kept. The corresponding fermi-sea is drawn in figure 5.

21In practice, we need a small number of bosons to satisfy the primary conditions.
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Figure 5: Fermi sea of generalized open-shells

In order to construct these operators, we need to be more explicit with the SU(2)R
symmetry. First, rewrite the closed shell operator in a manifestly covariant form:

Jd
(K)
closed ≡

K∏

I=0

I+1∏

m=0

Jdet
[

(J̄−)mA(I)1
]

=
K∏

I=0

Jdet
[

Ad(I,I+1)
]

(5.4)

where,

Ad(I,I+1) =
I+1∏

m=0

(J̄−)mA(I)1 ≡
(

A
(I)1
(α1···αI )(α̇1···α̇I+1)

)

·
(

A
(I)1

(β1···βI)(β̇1···β̇I+1)
εβ̇I+1α̇I+1

)

·

· · ·
(

A
(I)1
(ω1···ωI)(ω̇1···ω̇I+1)

εω̇I+1α̇1εω̇I β̇1εω̇I−1γ̇1 · · ·
)

(5.5)

with all undoted indices symmetrized.

The above operator can be generalized by stopping the multiplication before all SU(2)R
indices are exhausted:22

Ad(I,Ī) =
Ī∏

m=0

(J̄−)mA(I)1 ≡
(

A
(I)1
(α1···αI)(α̇1···α̇I+1)

)

·
(

A
(I)1

(β1···βI)(β̇1···β̇I+1)
εβ̇I+1α̇I+1

)

·

· · ·
(

A
(I)1
(χ1···χI)(χ̇1···χ̇I+1)

εχ̇I+1α̇I+2−Ī εχ̇I β̇I+2−Ī εχ̇I−1γ̇I+2−Ī · · ·
)

(5.6)

with all uncontracted indices of the same type (doted and undoted) symmetrized. The

operator has exactly (1 + Ī) fermions, independently of the level I.

We define the generalized open shells as:

K ′−1∏

I=0

Jdet
[

Ad(I,I+1)
] K∏

I=K ′

Jdet
[

Ad(I,K ′)
] (

C(K+1)B(~J)
)

GI
(5.7)

This operator will be BPS if the contractions of the SU(2)R indices of the B’s are limited

in a similar fashion to the fermions (i.e, J̄ − J̄3 of each B smaller than K ′/2). Taking

K ′ = βK, the charges of the operator (for simplicity ignoring the contribution from the

22The use of the (J̄−) notation is only schematic.
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bosons) are:

2J

N2
≈

βK−1
∑

I=0

I2 +

K∑

I=βK

I(βK + 1) ≈ β

2

(

1 − β2

3

)

K3 (5.8)

2J̄

N2
≈

K∑

I=βK

(I + 1 − βK)(βK + 1) ≈ β

2
(1 − β)2K3 (5.9)

Q
N2

≈
βK−1
∑

I=0

I +
K∑

I=βK

(βK + 1) ≈ β

(

1 − β

2

)

K2 (5.10)

Solving for K, we find,

J =
1

γ(β)
J̄ = α(β)

N2
√

2
√

1 − γ(β)2

( Q
N2

)3/2

, (5.11)

with,

γ(β) =
(1 − β)2

1 − β2

3

,

α(β) =

√
(
1 − 2

3β
) (

1 − β + β2

3

)

(2 − β)3/2
. (5.12)

In the allowed range β ∈ [0, 1], the ratio α(β) is bounded by 1
2
√

2
, which again is smaller

than the supergravity result (2.4a).

The shell construction has an interesting scaling property if we take a small K ′ = M not

scaling with K, i.e all shells are almost empty. The charges of the operator (for simplicity

ignoring contribution form the B’s) are:

2J

N2
≈

M−1∑

I=0

I2 +
K∑

I=M

(M + 1)I ≈ (M + 1)
K2

2
(5.13a)

2J̄

N2
≈

K∑

I=M

(I + 1 − M)(M + 1) ≈ (M + 1)
K2

2
− K(M2 − 1) (5.13b)

Q
N2

≈
M−1∑

I=0

I +
K∑

I=M

(M + 1) ≈ (M + 1)K (5.13c)

And the ratios are:

J =
2

5 − b

N2(1 − b)

4

( Q
N2

)2

, J − J̄ =
1 + 3b

4(1 − b)
Q (5.14)

with b = 2M−3
2M+1 defined so that the J − J̄ equation matches the supergravity result (2.6).

This result has the asymptotic behavior of the black holes with J = J̄ , missing the super-

gravity ratio (2.5a) by a factor 2
(5−b) ≤ 1

2 . The open fermi surface described in section 4,

is the M = 0 case.
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Figure 6: Fermi sea of 2 two regions model.

6. Summary and outlook

In this paper, we used the N = 4 field theory at weak non-zero coupling to reproduce

the relations J(Q) in 1/16-BPS black holes in AdS5 × S5 in the regimes (2.4a) and (2.5a).

The main ingredient in our construction is the filling of fermi surfaces which is used to

cancel the supersymmetry variation of the operator (Dαα̇)n. We expect the fermi sea

to play an important role in the microscopic description of any 1/16-BPS AdS5 black

holes in the limit of large J and J̄ (since the CFT operators will contain many covariant

derivatives). It would be interesting to study the 3-charge generalization of our discussion,

and in particular, to understand how the complicated angular momentum and R-charges

relations in supergravity appear from the field theory dual for this cases.

We have used only a subset of the allowed fields and shell configurations. It is therefore

not very surprising that we did not find the exact J(Q) or S(Q) of the operators as

computed in [9]. We expect that the latter also uses the fermionic shell structure that we

discussed here. If our operators are indeed primary, as we conjecture, our results suggest

the existence of new 1/16-BPS black objects in AdS5 × S5.

There are two lines of generalizations that one can consider. In this work, we have

mostly focused on two specific filling of shells - one in which the full J̄ multiplet is filled,

and one in which only states with near to maximal J̄3 are filled. We briefly mentioned

other possibilities. Clearly there is a rich variety of allowed fillings and the classification of

all possible J(Q) relations will be carried elsewhere [23].

For example, consider a fermi sea constructed from two regions as depicted in figure 6.

Region A in which full J̄ multiplets are filled up to some J̄0 = K ′/2 (i.e., up to ∼ K ′

derivatives). In region B, from angular momentum K ′+1
2 up to some J̄1 = K/2 where we

fill states with m̄ = J̄ and m̄ = −J̄ . This state can be projected to a J̄ = 0 state. This

configuration interpolates between the relation J/N2 ∝ (Q/N2)3/2 for J̄1 − J̄0 ¿ J̄0 (no

region B) and J/N2 ∝ (Q/N2)2 for J̄0 ¿ J̄1 (no region A). Of course, since we have not

exhibited a full supersymmetric completion of this specific mixture of shell filling, we do

not know for sure that such an operator exists, but we find it very plausible.

The interpretation of this state in AdS5 is also unclear. The two regions B, if continued

all the way down to J̄ = 0 correspond to two black holes with J̄ = J but with opposite J̄3.

Region A, if taken by itself, might correspond to a single black hole with J̄ = 0. What does
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the full configuration correspond to ? Does it correspond to highly deformed black holes,

in which the angular momenta J̄3 is distributed non-uniformly in space ? We believe this

to be the case, although more work is needed to verify this picture [23], but it is clear that

we have not exhausted the full range of possible J(Q) and S(Q) scalings, nor space-time

morphologies of the black holes.

The second possible generalization involves adding more types of fields. A set of at-

tractive candidates are the field strength operators Fαβ and theirs derivatives (G(I+2)’s).

These operators carry no R-charges. Thus they are excellent candidates to improve the

angular momentum to R-charge ratio reported in this paper. A BPS combination proba-

bly involves the addition of chiral fermions λαi needed to cancel the Fαβ ’s supersymmetry

transformations. More precisely, acting with Q1 on D . . . . . . DF generates A’s from vari-

ations of the covariant derivatives, for which we need shells as we discussed so far, and

D . . . .D[λiα,M1i]. Including the latter in the operator from the start means that the SUSY

variation of D . . . .DF will be zero within this operator (the Q1 variation of [λiα,M1i] is

zero). It is interesting to point out the existence of supersymmetric AdS5 × S5 config-

urations having angular momentum but no R-charge [24]. The existence of this type of

operators, which is left to future work, could provide evidence for the existence of these

spacetimes in string theory, since the existence of a naked singularity of the latter render

their interpretation unclear.
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A. A note on SO(6) representations

In the supergravity literature, the standard choice of simple roots and fundamental weight

of the SO(6) algebra is

α̃1 =
1√
2

(0, 1, 1) µ̃1 =
1√
8

(1, 1, 1) =

α̃2 =
1√
2

(1,−1, 0) µ̃2 =
1√
8

(2, 0, 0) =

α̃3 =
1√
2

(0, 1,−1) µ̃3 =
1√
8

(1, 1,−1) = (A.1)
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A representation can be expressed using a Young tablea with k, p, q columns of heights

1, 2, 3 respectively. The highest weight of the representation is

µ̃ =
1√
8

(k + 2p + q , k + q , k − q)

When we discuss the N = 4 SYM, we follow the notation of [21] using the Dynkin

labels of SO(6) ∼= SU(4). The related choice of simple roots and fundamental weights:

α̂1 = (2,−1, 0) µ̂1 = (1, 0, 0) =

α̂2 = (−1, 2,−1) µ̂2 = (0, 1, 0) =

α̂3 = (0,−1, 2) µ̂3 = (0, 0, 1) = (A.2)

In the Dynkin labels the highest weights of a representations are identical to the number

of columns of each height (k, p, q).

Comparing the above, the translation between the supergravity notations (Qi) and the

N = 4 notations (k, p, q) is:

Q1 =
k + 2p + q

2l
Q2 =

k + q

2l
Q3 =

k − q

2l
(A.3)

The overall factor is set by matching the N = 4 and supergravity BPS formula’s.

B. Charges in the fermionic bands model

We start with the single fermionic band model described by the operator:

∏

I∈R

I+1∏

m=0

Jdet
[

(J̄−)mA(I)
] (

C(K+1)B( ~J)
)

GI
(B.1)

with Ji ≤ K + 1 and where the set R is defined by:

R =
{
r ∈ Z

∣
∣ 0 ≤ r ≤ K ∪ Ks ≤ r ≤ 2K

}
s ∈ [1, 2] (B.2)

The quantum numbers of this operator in the large angular momentum and R-charge limit

are:

J

N2
≤ K3

6
+

(2K)3 − (Ks)3

6
+

3KL

2N2
,

Q
N2

=
K2

2
+

(2K)2 − (Ks)2

2
+

2L

N2
. (B.3)

Using the second equation to eliminate L, we find the relation:

J

N2
≤ α(y, s)

√
2

( Q
N2

)3/2

(B.4)

with, y ≡ K
/ √

Q
N2 and

α(y, s) ≡ 3

4
√

2
y

[

1 − 1

2
y2 +

1

2
y2

(

s2 − 4

9
s3

)]

. (B.5)
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Maximizing α over {y, s}, keeping in mind that L ≥ 0, the solution is found on the

boundary of the allowed range with L = 0 (i.e only fermions):

αmax = α(y, s)
∣
∣
y= 5

2
√

11
,s= 9

5
=

3

2
√

11
≈ 0.45. (B.6)

The above example demonstrates a property common to operators with fermionic bands:

the best ratio (maximal α) is found when all the angular momentum comes from the

fermions (L = 0).

Having this experience, we look for the best configuration of fermions in n bands. We

start by occupying all fermions up to level (n + 1)K, then removing fermions in the level’s

range
(
mK, (3

2 − s)mK
)
, with m an integer smaller than (n + 1) and s a real number in

the range
[

n−2
2n , 1

2

]
. The maximal and minimal values come from the condition that there

are some fermions in the upper band:

nK < (
3

2
− s)nK < (n + 1)K . (B.7)

The charges in the large angular momentum and R-charge limit are:

J

N2
=

K3

6

n∑

m=0

[

(m + 1)3 −
(

3

2
− s

)3

m3

]

+
3KL

2N2
, (B.8)

Q
N2

=
K2

2

n∑

m=0

[

(m + 1)2 −
(

3

2
− s

)2

m2

]

+
2L

N2
. (B.9)

Repeating the same procedure as above, we find:

J

N2
= α(y, s;n)

√
2

( Q
N2

)3/2

. (B.10)

Once again, the maximal value for α is found when L = 0:

αmax(n) =

√
3

2

√

(n + 1)2 − 1

4(n + 1)2 − 5
. (B.11)

αmax(n) is a monotonically decreasing function, and we conclude that the upper bound is

for n = 1, lower than the supergravity constraint by a factor of ≈ 0.45.
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[11] Z.W. Chong, M. Cvetič, H. Lu and C.N. Pope, Five-dimensional gauged supergravity black

holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901

[hep-th/0505112].

[12] H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS5 black holes,

JHEP 04 (2006) 036 [hep-th/0601156].

[13] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual

N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222].

[14] D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018

[hep-th/0403110].

[15] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174].

[16] D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125

[hep-th/0507203].

[17] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, hep-th/0510251.

[18] B. Sundborg, The hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B

573 (2000) 349 [hep-th/9908001].

[19] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The

hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv.

Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285].

[20] A.V. Ryzhov, Quarter BPS operators in N = 4 SYM, JHEP 11 (2001) 046

[hep-th/0109064].

[21] F.A. Dolan and H. Osborn, On short and semi-short representations for four dimensional

superconformal symmetry, Ann. Phys. (NY) 307 (2003) 41 [hep-th/0209056].

[22] V.K. Dobrev and V.B. Petkova, All positive energy unitary irreducible representations of

extended conformal supersymmetry, Phys. Lett. B 162 (1985) 127.

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3915
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3915
http://arxiv.org/abs/hep-th/9602135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CD14%2C2181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CD14%2C2181
http://arxiv.org/abs/hep-th/0505123
http://jhep.sissa.it/stdsearch?paper=12%282005%29006
http://arxiv.org/abs/hep-th/0508023
http://jhep.sissa.it/stdsearch?paper=02%282004%29006
http://arxiv.org/abs/hep-th/0401042
http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://arxiv.org/abs/hep-th/0401129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C041901
http://arxiv.org/abs/hep-th/0505112
http://jhep.sissa.it/stdsearch?paper=04%282006%29036
http://arxiv.org/abs/hep-th/0601156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C5%2C809
http://arxiv.org/abs/hep-th/0111222
http://jhep.sissa.it/stdsearch?paper=07%282004%29018
http://arxiv.org/abs/hep-th/0403110
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://arxiv.org/abs/hep-th/0409174
http://jhep.sissa.it/stdsearch?paper=01%282006%29125
http://arxiv.org/abs/hep-th/0507203
http://arxiv.org/abs/hep-th/0510251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB573%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB573%2C349
http://arxiv.org/abs/hep-th/9908001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C603
http://arxiv.org/abs/hep-th/0310285
http://jhep.sissa.it/stdsearch?paper=11%282001%29046
http://arxiv.org/abs/hep-th/0109064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C307%2C41
http://arxiv.org/abs/hep-th/0209056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB162%2C127


J
H
E
P
0
1
(
2
0
0
7
)
0
4
8

[23] M. Berkooz, D.Reichmann and J. Simón, work in progess.
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